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Abstract
A quantum particle with potential energy V (q̂, t) is considered in the frame of
a phase-space picture of the quantum theory, and the interconnection between
quantum mechanics and a h̄-dependent extended classical dynamics is analysed.
The initial position-space wavefunction determines the initial conditions for a
set of Hamilton-like equations that leads up to an ensemble of complex-valued
phase-space trajectories. The one-dimensional driven harmonic oscillator is
used for illustrating the method, and for generating a complete set of phase-
space functions.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Sq

1. Introduction

Many authors have investigated the relation between quantum mechanics (QM) and classical
mechanics (CM). Among the attempts to formulate both theories in terms of a common
language are the Bohmian theory [1–5], the Wigner function [6], the Husimi function [7],
a set of phase-space quasi-probability distribution functions [8–13], the stochastic quantum
mechanics [14] and the quantum mechanics on phase-space approach [15]. See also references
within the cited literature.

To construct the QM–CM bridge there are a number of difficulties to overcome. On the one
hand, the two theories have disparate physical and mathematical formulations. For instance:
(i) phase-space trajectory is a well-defined classical concept, whereas the Heisenberg
uncertainty relation for position and momentum precludes within quantum theory the notion of
classical trajectories from the standpoint of the spectral projectors for position and momentum
operators. (ii) Hamiltonian dynamics simultaneously involves both position and momentum
variables, while the Schrödinger picture of QM only requires either the position or the
momentum representation. On the other hand, according to the correspondence principle,
in the case of spinless particles QM must agree with CM in some appropriate limit (e.g.
h̄ → 0, high quantum numbers, great masses). But the nature of that limiting process is not
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fully understood, and no commonly accepted definition of the correspondence principle yet
exists [16].

The focal point of the present paper is to explore some of the characteristics of the QM–
CM bridge by starting from the so-called phase-space picture of the QM [17]. The strong
point of this is that it follows the conventional approach of quantum-mechanical transformation
theory for relating different pictures to each other (e.g. Schrödinger, Heisenberg, interaction).

1.1. System, notation and contents

The physical system. For simplicity, we will consider a quantum particle of mass m with
three degrees of freedom, with position and momentum operators q̂ = {q̂1, q̂2, q̂3} and
p̂ = {p̂1, p̂2, p̂3}, and Hamiltonian H(q̂, p̂, t) = p̂2/(2m) + V (q̂, t), where V (q̂, t) is the
potential energy. The Schrödinger equation ih̄(d/dt)|ψ(t)〉 = H(q̂, p̂, t)|ψ(t)〉, with initial
state |ψ(to)〉, describes the time evolution of the quantum-mechanical state |ψ(t)〉. The Hilbert
space of the quantum-mechanical states of the particle is designated by H.

We will assume the phase space Hcl , with states (Q,P ) := (Q1,Q2,Q3, P1, P2, P3).
The coordinates Q = Q(t) = Q′ + iQ′′ and momenta P = P(t) = P ′ + iP ′′ are in general
differentiable functions of time t and complex-valued, and the initial values are denoted by
Q0 := Q(t0) and P0 := P(t0). Operators for Hcl are distinguished by a circumflex (˘), and
we define commuting phase-space operators Q̆ = (Q̆1, Q̆2, Q̆3) and P̆ = (P̆ 1, P̆ 2, P̆ 3),

Q̆n := ih̄
∂

∂Pn

P̆ n := −ih̄
∂

∂Qn

n = 1, 2, 3. (1)

A multi-index notation is also used: let k be an ordered set k = (k1, k2, k3) consisting
of three non-negative integers restricted by k = k1 + k2 + k3, then k! = k1!k2!k3!, Q̆k =
Q̆

k1
1 Q̆

k2
2 Q̆

k3
3 , (∂/∂Q)k = (∂/∂Q1)

k1(∂/∂Q2)
k2(∂/∂Q3)

k3 , and so on.
The contents of this paper. In section 2 we will briefly outline the basic equations which

serve as the starting point for this work. In section 3, we will demostrate that a set of
h̄-dependent Hamilton-like equations can be identified allowing the description of complex-
valued trajectories (Q(t), P (t)) in the phase space Hcl , and that the initial conditions of such
trajectories are fixed by the initial position-space wavefunction ψ(x, t0). In section 4, we
will be concerned with a procedure for extracting the position and momentum wavefunctions
from the phase-space wavefunction ψ(Q,P, t), and with a semiclassical approximation that
fully describes the quantum evolution of ψ(Q,P, t) in terms of the phase-space trajectories
(Q(t), P (t)). In section 5 we will illustrate the theory by dealing with a one-dimensional
driven oscillator. Finally, our concluding remarks are summarized in section 6.

2. The basic equations for this work

2.1. Position-space wavefunction in the polar form

Since the position-space wavefunction ψ(x, t) is a complex function, it can be expressed in
the polar form

ψ(x, t) := 〈x |ψ(t)〉 = R(x, t) exp
[ i

h̄
W(x, t)

]
(2)

with the amplitude R(x, t) and the phaseW(x, t) being functions with real values, likewise the
position parameter x := (x1, x2, x3) ∈ �3. Thus, inserting (2) into the Schrödinger equation
and separating into real and imaginary parts, we obtain that the time-dependent Schrödinger
equation is equivalent to the couple of equations [2, 3, 13]
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∂W(x, t)

∂t
+

1

2m
[∇W(x, t)]2 − h̄2

2m

∇2R(x, t)

R(x, t)
+ V (x, t) = 0 (3a)

∂R2(x, t)

∂t
+

1

m
∇ · [R2(x, t)∇W(x, t)] = 0 (3b)

where the term VR(x, t) := −(h̄2/2m)(∇2R(x, t))/R(x, t) is the so-called Bohmian quantum
potential [2, 5]. It is determined by the amplitude R(x, t) of the wavefunction which in turn
depends on the interaction potential V (x, t) and the initial state ψ(x, t0).

Equation (3a) establishes that the phase W(x, t) of the position-space wavefunction
of a quantum particle satisfies an equation of motion that is identical in form to the
usual classical Hamilton–Jacobi equation (CHJ), differing from it only by the appearance
of the Bohmian quantum potential VR(x, t) alongside the classical potential energy term
V (x, t). However, as annotated in [4], there are also important physical differences between
(3a) and the CHJ. Equation (3b) is the equation of continuity for the probability density
ρ(x, t) := R2(x, t) = |ψ(x, t)|2 of the particle in position space.

2.2. Phase-space picture of quantum mechanics

Consider the specific case in which we restrict the Hamilton operator to H(q̂, p̂, t) =
p̂2/(2m) + V (q̂, t) and the arbitrary smooth phase-space function S(Q,P, t) to S(Q,P0, t).
As a result the auxiliary functions defined in equation (14) of [17] simplify to q(Q,P0, t) := Q

and

p(q, P0, t) := ∂S(Q,P0, t)

∂Q
. (4)

Next we define in the Hilbert space H a phase-space picture of the Schrödinger equation
by the transformation (see equation (41) of [17])

|ψ(Q,P, t)〉 := exp
(
− i

h̄
[S(Q,P0, t) − QP/2]

)
D̂(−Q,−P)|ψ(t)〉 (5)

where D̂(±Q,±P) := exp(±(i/h̄)[P q̂ − Qp̂]) are the Weyl operator and its inverse.
After expanding V (q + Q̆, t) in a Taylor series, and by selecting a suitable choice of the

free parameters {S,Q,P }, the following basic equations emerge [17]:

(i) The generalized Hamilton equations (GH)
dQ

dt
= p

m
= 1

m

∂S(Q,P0, t)

∂Q

dP

dt
= −∂V (Q, t)

∂Q
. (6)

(ii) The quantum Hamilton–Jacobi equation (QHJ)

∂S(Q,P0, t)

∂t
+

1

2m

[
∂S(Q,P0, t)

∂Q

]2

− ih̄

2m

∂2S(Q,P0, t)

∂Q2
+ V (Q, t) = 0 (7)

with the initial condition S(Q,P0, t0) = p(Q0, P0, t0)Q.
(iii) The phase-space representative of the Schrödinger equation

ih̄
d

dt
|ψ(Q(t), P (t), t)〉 = D̆|ψ(Q(t), P (t), t)〉 (8)

with the initial state |ψ(Q0, P0, t0)〉, and the phase-space operator

D̆ = D(Q, Q̆, P̆ , t) := 1

2m
P̆ 2 +

∞∑
k=2

Vk(Q, t)Q̆k. (9)

The symbol Vk(Q, t) is defined for the multi-index k := (k1, k2, k3), and by the relation
k!Vk(Q, t) := (∂/∂Q)kV (Q, t).
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One can rewrite (8) as an equation with time-independent parameters Q and P by using
ih̄d/dt = ih̄∂/∂t − h̄L̆, where h̄L̆ := (dQ/dt)P̆ − (dP/dt)Q̆ is the generalized Liouville
operator, and ∂/∂t := (∂/∂t)(Q,P ) denotes the time-rate of change at a fixed phase-space point
(Q,P ). This means that a stationary or fixed observer at the phase-space point (Q,P ) finds
that the rate of change of the state |ψ(Q,P, t)〉 is given by

ih̄
∂

∂t
|ψ(Q,P, t)〉 = (h̄L̆ + D̆)|ψ(Q,P, t)〉. (10)

Consequently, a hypothetical moving observer, accompanying a phase-space image point
(Q(t), P (t)), will at all times observe a non-vanishing rate of change of the quantum-
mechanical state, as given by (8).

3. Extended classical dynamics

The objective of this section is to analyse the consequences of the equations (6) and (7)
which we can think as defining a h̄-dependent extended classical dynamics. Let us start by
introducing the auxiliary quantities

Vh̄(Q,P0, t) := − ih̄

2m

∂2S(Q,P0, t)

∂Q2
Fh̄(Q,P0, t) := −∂Vh̄(Q,P0, t)

∂Q
(11)

which, in virtue of the occurrence of the Planck constant h̄in (11), will be referred to as quantum
potential (energy) and quantum force, respectively. Also note that V (Q, t) and Vh̄(Q,P0, t)

play different roles in the theory,since the effective potential Vh̄(Q,P0, t) + V (Q, t) is involved
in (7), whereas in (6) only V (Q, t) participates.

The term Vh̄(Q,P0, t) in (7) arises from the quantum kinetic energy p̂2/(2m), and its role
seems analogous to that of the Bohmian quantum potential VR(x, t) in (3a). However, there
are important differences between Vh̄(Q,P0, t) and VR(x, t):

(i) VR(x, t) and its argument x ∈ �3 are real-valued while, in contrast, Vh̄(Q,P0, t) and its
arguments Q and P0 are in general complex-valued.

(ii) VR(x, t) is determined by the quantum state of the system, i.e. one has to solve first the
Schrödinger equation to obtain the amplitude R(x, t) of the wavefunction ψ(x, t). In
contrast, Vh̄(Q,P0, t) is independent of the quantum state, except that P0 depends on
the initial quantum state at time t0 (see equation (22)). It is worth mentioning here that
Vh̄(Q,P0, t) only can be determined after solving the QHJ equation (7) for S(Q,P0, t).

The QHJ equation (7) has the charm of being a h̄-dependent stand-alone partial differential
equation for S(Q,P0, t). Since it resembles the CHJ equation for an effective potential
V (Q, t) + Vh̄(Q,P0, t), one can interpret it as a classical equation that provides a way of
adding quantum effects to classical dynamics. Let us now describe the method.

3.1. Link between P and p(Q,P0, t)

As a general rule the GH equations (6) differ from the canonical Hamilton equations in that
the first equation (6) includes on the right-hand side p(Q,P0, t) instead of P. To decode the
relation between p(Q,P0, t) and P we apply the operator ∂/∂Q on equation (7) and use the
definition of p(Q,P0, t), to obtain

∂p

∂t
+

p

m

∂p

∂Q
− ih̄

2m

∂2p

∂Q2
+

∂V

∂Q
= 0. (12)
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From this and (6), and the chain rule dp/dt = ∂p/∂t + (p/m)∂p/∂Q, we get the relation

dP

dt
= − ∂V

∂Q
= ∂p

∂t
+

p

m

∂p

∂Q
− ih̄

2m

∂2p

∂Q2
= dp

dt
− ih̄

2m

∂2p

∂Q2
. (13)

That is, the rate of change of the difference (P − p) is given by

− d

dt
(P − p) = Fh̄(Q,P0, t) := −∂Vh̄(Q,P0, t)

∂Q
(14)

which implies that

P(t) − p(Q(t), P0, t) = �0 −
∫ t

t0

dt ′Fh̄(Q(t ′), P0, t
′). (15)

Equation (15) introduces a new parameter defined by �0 := P0 − p (Q0, P0, t0), i.e. it
measures the difference between the initial values of P0 and p (Q0, P0, t0). Note that the
quantum force vanishes in the particular case of quantum systems for which S(Q,P0, t) is a
quadratic function of Q, namely S(Q,P0, t) = a0(P0, t) + a1(P0, t)Q + a2(P0, t)Q

2.

3.2. Equivalence of (6) with Hamilton-like equations

After combining (6) and (14), we are able to rewrite the GH equations (6) in the form

dQ

dt
= p

m

dp

dt
= − ∂

∂Q
[V (Q, t) + Vh̄(Q,P0, t)] (16)

with the initial condition (Q0, p(Q0, P0, t0)), and

p(Q0, P0, t0) = P0 − �0 = ∂S(Q,P0, t0)

∂Q

∣∣∣∣
Q=Q0

. (17)

That is, the extended classical dynamics is described by a set of Hamilton-like equations
for a complex-valued and h̄-dependent Hamiltonian Hh̄(Q,p, t) := p2/(2m) + V (Q, t) +
Vh̄(Q,P0, t), in which V (Q, t) is augmented by the quantum potential Vh̄(Q,P0, t). At this
point, it is worth recalling that complex potentials, complex Hamiltonians and complex-valued
trajectories play important roles in different fields of physics, e.g. [18–27].

Classical limit. In the limit h̄/m → 0 with ∂2S(Q,P0, t)/∂Q2 kept finite, the quantum
potential (11) vanishes and the set (16) reduces to the canonical Hamilton equations. The
condition h̄/m → 0 means that the classical mechanics accurately describes the motion of the
particle provided that h̄/m is small compared to a characteristic quantity of the system with
dimensions of length2/time, for example the product lv, where l is a typical distance over
which the wavefunction changes significantly and v is a typical particle speed [28].

3.3. Link between (Q0, P0) and the initial wavefunction ψ(x, t0)

Let us now demonstrate that the initial conditions for the Hamilton-like equation (16) are
determined by the initial position-space wavefunction ψ(x, t0). For this, we withdraw the
multi-index notation and rewrite (7) in a form similar to equation (3a):

∂S(Q,P0, t)

∂t
+

1

2m
[∇S(Q,P0, t)]2 − ih̄

2m
∇2S(Q,P0, t) + V (Q, t) = 0. (18)

Since x is an argument of the position-space wavefunction ψ(x, t), it is real-valued.
Thus, in order to compare (18) and (3a) one must restrict considerations in (18) to real
values of Q, i.e. Q = x ∈ �3. In this case, one uses the decomposition S(x, P0, t) :=
A(x, P ′

0, P
′′
0 , t) − ih̄B(x, P ′

0, P
′′
0 , t), where A and B are real functions. By substituting this



5310 D Campos

into (18), and after separating real and imaginary parts, the following couple of real equations
is obtained:

∂A

∂t
+

1

2m
(∇A)2 − h̄2

2m
[∇2B + (∇B)2] + V = 0 (19a)

∂B

∂t
+

1

m
(∇A) · (∇B) +

1

2m
∇2A = 0. (19b)

By comparing (19a) with (3a) we can identify the following quantities

A(x, P ′
0, P

′′
0 , t) = W(x, t) (20a)

∇2B + (∇B)2 = ∇2R

R
= ∇2ρ1/2

ρ1/2
= 1

2
∇2 ln ρ +

1

4
(∇ ln ρ)2 (20b)

and, therefore, B(x, P ′
0, P

′′
0 , t) = 1

2 ln ρ(x, t). In addition, the vectorial identity ∇ · (ρp) =
(∇ρ) ·p+ρ(∇ ·p), with p = ∇W allows us to demostrate that the equation (19b) is equivalent
to continuity equation (3b).

In conclusion, on the real axis Q = x ∈ �3 the solution S(x, P0, t) of the QHJ
equation (18) is related to the position-space wavefunction ψ(x, t) in the form

S(x, P0, t) = W(x, t) − ih̄

2
ln ρ(x, t). (21)

Consequently, for t = t0, equations (17) and (21) establish that the initial quantum state
ψ(x, t0) fully determines the complex initial momentum p(x0, P0, t0) that corresponds to the
initial real coordinate Q0 := Q(t0) = x0 ∈ �3, as given by

p(x0, P0, t0) = P0 − �0

= ∂W(x, t0)

∂x

∣∣∣∣
x=x0

− ih̄

2

∂ρ(x, t0)/∂x

ρ(x, t0)

∣∣∣∣
x=x0

:= p′
0 − ip′′

0 . (22)

In concordance with the considerations of the appendix, the parameter �0 := P0 −
p (Q0, P0, t0) is hereafter fixed as �0 = 0. As a result, P0 = P ′

0 + iP ′′
0 is a complex-valued

quantity, with P ′
0 := p′

0 and P ′′
0 := −p′′

0 .
At this point, some comments on the effects of the quantum potential within the extended

classical dynamics are in order:

(i) Consider a phase-space trajectory with initial condition (x0, p
′
0 − ip′′

0). If the complex-
valued quantum potential Vh̄(Q,P0, t) were absent in (16) (i.e. in the classical limit when
h̄/m → 0), this trajectory would be equivalent to two uncoupled phase-space trajectories
with initial conditions (x0, p

′
0) and (x0,−p′′

0 ). However, since Vh̄(Q,P0, t) does exist
in (16), the initial condition (x0, p

′
0 − ip′′

0 ) and the equations (16) lead to a new single
complex-valued phase-space trajectory, which cannot be constructed from the uncoupled
real-valued trajectories (x0, p

′
0) and (x0,−p′′

0).
(ii) Consider a complex-valued initial state ψ(x, t0) in the polar form (2), and recall (22),

and the expression ρ(x, t0) = |ψ(x, t0)|2 � 0. At the critical points of ρ(x, t0), in
particular at the nodes of the initial state ψ(x, t0), the initial momentum P0 is a purely real
number, whereas it is a purely imaginary number at the critical points of W(x, t0). Thus,
the sets of critical points of ρ(x, t0) and W(x, t0) play a privileged role in the extended
classical dynamics. In fact, by selecting a critical point x0 and fixing the corresponding
initial condition, either (x0, p

′
0) or (x0,−p′′

0), a phase-space trajectory is generated by the
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equations (16). However, since the initial condition is real-valued, the effects of the kind
(i) are absent and so the trajectory only undergoes the effects due to the effective potential
V (Q, t) + Vh̄(Q,P0, t).

(iii) A similar behaviour to (ii) exists in the case of a real-valued initial state ψ(x, t0), because
the initial conditions for (16) are then of the form (x0,−p′′

0).

4. Phase-space quantum dynamics

In this section our task is mainly to consider the quantum dynamics as described by
equations (8) and (10), and to introduce the so-called semiclassical approximation as stated in
the contents.

The phase-space wavefunction of the quantum state (5) is given by the scalar product
ψ(Q,P, t) := 〈0|ψ(Q,P, t)〉, where |0〉 := |Z = 0〉 is the coherent state |Z = 0〉, i.e. the
ground state of the f -dimensional harmonic oscillator (in the present paper, f = 3). The
wavefunction ψ(Q,P, t) satisfies equations of motion that are identical in form to (8) and
(10). On the other hand, the position and momentum wavefunctions can be obtained from
ψ(Q,P, t), when Q = Q′ + iQ′′ and P = P ′ + iP ′′ are complex-valued parameters, by using
relations (67) and (70) of [17], in the form:

ψ(Q′, t) = (2
√

πpo)
−f/2(2πh̄)−f/2

∫ ∞

−∞
dP ′ exp

( i

h̄
S(Q′, P0, t)

)
ψ(Q′, P ′ + iP ′′, t) (23)

and

ψ̃(P ′, t) = (2
√

πqo)
−f/2(2πh̄)−f/2

×
∫ ∞

−∞
dQ′ exp

(
− i

h̄
QP ′

)
exp

( i

h̄
S(Q,P0, t)

)
ψ(Q,P ′, t) (24)

where qo and po are position and momentum units restricted by the condition qopo = h̄. Here
we are using the notation Q = (Q1,Q2,Q3) = Q′ + iQ′′, with Q′ = (Q′

1,Q
′
2,Q

′
3) and

dQ′ = dQ′
1 dQ′

2 dQ′
3, and so on. That is Q′ ∈ �3 and P ′ ∈ �3 are real-valued quantities.

Let us stress that the only role of the factor exp (iS(Q,P0, t)/h̄) entering the integrands of
(23) and (24) is to counterbalance the factor exp (−iS(Q,P0, t)/h̄) included in the definition
of the phase-space wavefunction ψ(Q,P, t).

4.1. Semiclassical approximation

The semiclassical approximation is defined as the one characterized by neglecting in (10) the
effects due to the phase-space operator D̆, i.e. by taking into account only the Liouvillian flow
due to the operator L̆. In this approximation, ψ(Q,P, t) is fully transported in the complex
phase space by the ensemble of classical trajectories, obtained as the solutions to (6). That is,

ψscl(Q,P, t) = ψ(Q0(Q,P, t), P0(Q,P, t), t0) (25)

where (Q(t), P (t)) is the trajectory passing through the point (Q0, P0) := (Q(t0), P (t0)) at
time t0. Since the flow generated by the extended classical dynamics is generally h̄-dependent,
the semiclassical approximation (25) could give not only a simplified picture of the quantum
time evolution but also a more useful one.

4.2. The image arising from the phase-space picture

At this point, a conceptual comparison with the interaction picture can help for grasping
the physical meaning of the phase-space picture. The interaction picture transforms the
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Schrödinger equation for the Hamiltonian Ĥ = Ĥ 0 + V̂ (t) with the goal of separating the
free motion due to Ĥ 0 from the motion of the total system, so that the resulting state vector is
time-dependent, but this dependence is entirely due to the interaction V̂ (t).

In the case of the phase-space picture of the QM, the physical goal is to decompose the
quantum effects into two groups: (i) the contribution of the Liouvillian flow (operator L̆)
that leads up to the semiclassical aproximation (25). In this approximation, the h̄-dependent
extended classical dynamics is enough to describe the evolution of the quantum state
ψ(Q,P, t) in the phase space; (ii) the effects stemming from the phase operator D̆, which
take care of higher-order quantum effects in h̄.

4.3. Contrast between Bohmian, Wigner and phase-space trajectories

Let us emphasize that the Bohmian trajectories are the basis for the Bohmian mechanics
[1, 2, 5], whereas the present phase-space trajectories are only a tool for solving the
Schrödinger equation. In this sense, they resemble the Wigner trajectories [11, 29]. This
concept and its limitations have been discussed in [29], where it was also found that under
certain circumstances a process of creation and destruction of Wigner trajectories exists.
Consequently, the applicability of such a concept is limited.

It seems that the phase-space trajectories proposed in the present paper are not destroyed
or created by virtue of two facts: (i) they are complex-valued and independent of the quantum
state, with the exception that the initial quantum state ψ(x, t0) fixes the initial conditions for
the ensemble of trajectories (see equation (22)); (ii) they have as the classic limit (h̄/m → 0)

the classical trajectories given by the canonical Hamilton equations, which is a sound property
for developing semiclassical approximations [29].

5. One-dimensional driven harmonic oscillator

This section has two goals: (i) illustrate the phase-space technique described in this paper by
applying it to the one-dimensional driven oscillator, and (ii) generate a complete orthonormal
set of functions {ψn(Q,P, t), n = 0, 1, 2, . . .}, i.e. a basis for future quantum-mechanical
calculations in the phase space.

We consider a Hamiltonian H(q̂, p̂, t) = H0(q̂, p̂) − F(t)q̂ , where H0(q̂, p̂) =
p̂2/(2m) +

(
mω2

0

/
2
)
q̂2 describes a one-dimensional harmonic oscillator of mass m and

frequency ω0, and F(t) is a real function of time t corresponding to a spatially uniform
force.

5.1. Solution of the quantum Hamilton–Jacobi equation

The QHJ equation (7) becomes

∂S

∂t
+

1

2m

(
∂S

∂Q

)2

− ih̄

2m

∂2S

∂Q2
+

1

2
mω2

0Q
2 − F(t)Q = 0 S(Q,P0, t0) = P0Q. (26)

Equation (26) for S(Q,P0, t) can be solved by using the ansatz

S(Q,P0, t) = −s(t, t0) + y(t, t0)Q − 1
2m�(t, t0)Q

2 (27)
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which leads to d�/dt = �2 + ω2
0, dy/dt = �y + F(t) and ds(t)/dt = (y2 + ih̄m�)/(2m).

After integrating these equations and by introducing the definition δ0 := −ω0t0, we obtain

�(t, t0) = ω0 tan(ω0t + δ0) y(t, t0) = P0 + β(t, t0)

cos(ω0t + δ0)

s(t, t0) = 1

2m

∫ t

t0

dt ′y2(t ′) − ih̄

2
ln(cos(ω0t + δ0))

= P 2
0

2m

0(t, t0) +

P0

m

1(t, t0) +

1

2m

2(t, t0) − ih̄

2
ln(cos(ω0t + δ0))

(28)

with the auxiliary quantities

β(t, t0) :=
∫ t

t0

dt ′F(t ′) cos(ω0t
′ + δ0)

α(t, t0) := − 1

mω0

∫ t

t0

dt ′F(t ′) sin(ω0t
′ + δ0)

(29)

γ (t, t0) := 1

2mω0

∫ t

t0

dt ′′
∫ t ′′

t0

dt ′F(t ′′)F (t ′) sin(ω0(t
′′ − t ′))


n(t, t0) :=
∫ t

t0

dt ′
βn(t ′, t0)

cos2(ω0t ′ + δ0)
where n = 0, 1, 2.

Note that integration by parts gives the relations 
0(t, t0) = tan(ω0t + δ0)/ω0,
1(t, t0) =
mα(t, t0) + β(t, t0)
0(t, t0) and 
2(t, t0) = β(t, t0)
1(t, t0) − 2mγ (t, t0).

5.2. Solution of the generalized Hamilton equations

From (27), (11) and (15), we obtain the quantum potential Vh̄(Q,P0, t) = (ih̄/2)�(t), the
quantum force Fh̄(Q,P0, t) = 0 and the relation P(t) = p(Q(t), P0, t). Thus the Hamilton-
like equations (16) become dQ/dt = P/m and dP/dt = −mω2

0Q + F(t), with the initial
condition (Q0, P0). The solution is given by[

Q(t)

P (t)

]
=

[
cos(ω0t + δ0) sin(ω0t + δ0)/(mω0)

−mω0 sin(ω0t + δ0) cos(ω0t + δ0)

] [
Q0 + α(t, t0)

P0 + β(t, t0)

]
. (30)

The points (Q(t0), P0) and (Q(t), P (t)) belong to the same phase-space trajectory, and they
are connected by (30) or, equivalently, by the inverse transformation,[

Q0

P0

]
=

[
cos(ω0t + δ0) −sin(ω0t + δ0)/(mω0)

mω0 sin(ω0t + δ0) cos(ω0t + δ0)

] [
Q(t) − a(t, t0)

P (t) − b(t, t0)

]
(31)

with the auxiliary quantities[
a(t, t0)

b(t, t0)

]
:=

[
cos(ω0t + δ0) sin(ω0t + δ0)/(mω0)

−mω0 sin(ω0t + δ0) cos(ω0t + δ0)

] [
α(t, t0)

β(t, t0)

]
. (32)

Let us note that a(t, t0) satisfies the equation of motion mä = −mω2
0a + F(t), b(t, t0) =

mȧ(t, t0), and that the quantities α(t, t0), β(t, t0), a(t, t0) and b(t, t0) have their origin in the
force F(t). In comparison with the unperturbed harmonic oscillator the net result of F(t) is
to shift either the initial state (Q0, P0) or the end state (Q,P ).

Differing from classical mechanics, the solution (30) of the Hamilton-like equations allows
for complex values of Q and P, because P0 is generally complex-valued. In addition, since (30)
is a linear transformation connecting the states (Q0, P0) and (Q,P ), then a complex trajectory
(Q(t), P (t)) = (Q′(t) + iQ′′(t), P ′(t) + iP ′′(t)) may be viewed as the combination of two
real-valued solutions of the Hamilton equations, namely (Q′(t), P ′(t)) and (Q′′(t), P ′′(t)).
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5.3. Evolution of the quantum state

Let us consider the time evolution of the system as seen by a fixed observer at the point
(Q,P ), who has to solve the Schrödinger equation (10) with the phase-space operators

h̄L̆ = P

m
P̆ +

(
mω2

0Q − F(t)
)
Q̆ D̆ = 1

2m
P̆ 2 +

1

2
mω2

0Q̆
2. (33)

For solving (10) one takes advantage of the interaction picture for getting the exact solution
|ψ(t)〉, and afterwards the initial state is fixed as |ψ(t0)〉 = |n〉, where |n〉 is an energy
eigenstate of the unperturbed harmonic oscillator.

Let us recall the auxiliary functions [17]

M(Q) := (
√

πqo)
−f/2 exp[−(κoQ)2] (34)

M̃(P ) := (
√

πpo)
−f/2 exp[−(χoP )2] (35)

where κo := (
√

2qo)
−1 and χo := (

√
2po)

−1. By using (55b) of [17] we obtain the phase-space
wavefunction

ψn(Q,P, t) = exp
( i

h̄
γ
)

exp
(
− i

h̄
S(Q,P0, t)

)
exp

( i

2h̄
[QP + βQ0 − αP0]

)

× exp
(
− iω0

2
(t − t0)

)
[(πh̄)1/2M(Q0)M̃(P0)]1/2 1√

n!
[κoQ0 − iχoP0]n (36)

where the points (Q0, P0) and (Q,P ) are related by the transformation (31). Equivalently,
the wavefunction ψn(Q,P, t) can be expressed in the form

ψn(Q,P, t) = exp
( i

h̄
γ
)

exp
(
− i

h̄
S(Q,P0, t)

)
exp

( i

2h̄
[QP + bQ − aP ]

)

× exp

(
−iω0

(
n +

1

2

)
(t − t0)

)
[(πh̄)1/2M(Q − a)M̃(P − b)]1/2

× 1√
n!

[κo(Q − a) − iχo(P − b)]n. (37)

In the above equations the arguments of α(t, t0) and other quantities are suppressed.

5.4. Position and momentum wavefunctions

In this section, our task is to determine the position-space wavefunction ψ(Q′, t) by applying
the relation (23) to the phase-space wavefunction (37). After the replacement Q → Q′ ∈ �,
by expanding [κo(Q

′ − a) − iχo(P − b)]n, recalling that P = P ′ + iP ′′ is complex-valued,
and using the Rodrigues formula and the identity [30]

n∑
k=0

(
n

k

)
(2y)n−kHk(x) = Hn(x + y) (38)

we obtain that the wavefunction in position space is given by

ψn(Q
′, t) = exp

( i

h̄
γ
)

exp

(
−iω0

(
n +

1

2

)
(t − t0)

)
exp

( i

h̄

(
Q′ − a

2

)
b
)

× 1√
2nn!

M(Q′ − a)Hn

(
Q′ − a

qo

)
. (39)



On the phase-space picture of quantum mechanics 5315

-2 -1 1 2
x0

-i P0

-4 -2 2 4
x0

-i P0

n=1
n=2

Figure 1. In accordance with (41), the behaviour of P0 as a function of the initial position
Q0 = x0 ∈ � is determined by the zeros of the Hermite polynomials. For the ground state (n = 0)

the relation is linear, P0 = i(po/qo)x0.

A similar procedure allows us to determine the wavefunction ψ̃(P ′, t) in momentum
space by applying the relation (24) to the phase-space wavefunction (37). The result is

ψ̃(P ′, t) = exp
( i

h̄
γ
)

exp

(
−iω0

(
n +

1

2

)
(t − t0)

)
exp

(
− i

h̄
a

(
P ′ − b

2

))

× (−i)n√
2nn!

M̃(P ′ − b)Hn

(
P ′ − b

po

)
. (40)

5.5. Image of the moving observer

Let us now consider the time evolution of the system as seen by a moving observer
travelling in phase space with the point (Q(t), P (t)), who has to solve the Schrödinger
equation (8). The descriptions of the fixed observer and the moving observer are physically
equivalent, provided that the solution of (8) is obtained from (36), or from (37), by doing the
substitutions Q → Q(t) and P → P(t), where Q(t) and P(t) are related to the initial state
(Q0, P0) by the equation (30).

In order to apply (30), we must set up the initial condition (Q0, P0) for each trajectory. To
do this we consider that at t0 the initial position wavefunction is ψ(x0, t0) = ϕn(x0) := 〈x0 |n〉,
i.e. the nth eigenfunction of the harmonic oscillator. Since ϕn(x0) is real, then W(x0, t0) = 0,
and the initial probability density is given by ρ(x0, t0) = ϕ2

n(x0). Therefore, for a given initial
position x0 ∈ �, equation (22) and the relation (d/dx)Hn(x) = 2nHn−1(x) give the initial
momentum

P0(x0) = ipo

[
x0

qo

−
√

2n
ϕn−1(x0)

ϕn(x0)

]
= ipo

[
x0

qo

− 2n
Hn−1(x0/qo)

Hn(x0/qo)

]
:= iP ′′

0 (41)

with ϕ−1(x0, t0) := 0 and H−1(x) := 0. If the initial state is the ground state n = 0, then
P0 = i(po/qo)x0. In the general case (see figure 1), since P0 has poles at all n real zeros of the
Hermite polynomial Hn(x0/qo),−iP0 is an increasing function of x0 between two successive
zeros of Hn(x0/qo).

6. Concluding remarks

Let us now sum up other points emerging in this work for the general case of a particle with
potential energy V (Q, t):
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(i) Since the Schrödinger equation (10) and the corresponding equation for ψ(Q,P, t) :=
〈0|ψ(Q,P, t)〉 are lineal, the probability amplitude ψ(Q,P, t) obeys the superposition
principle. Thus, ψ(Q,P, t) can be expanded in terms of a basis {ψn(Q,P, t)}, for
example the one constructed with elements given by (36) or (37). In practice, a truncation
procedure is applied and only a finite set of coefficients {cn(t), n = 0, 1, 2, . . . , N} is
obtained.

(ii) After having the set of N coefficients cn(t), an approximation of the phase-space
wavefunction ψ(Q,P, t) may be used, and approximate position and momentum
wavefunctions can be calculated from (23) and (24). However, for counterbalancing
the factor exp(iS(Q,P0, t)/h̄) entering the integrands, first the QHJ equation (7) has to
be solved for S(Q,P0, t). This function is also required for setting the Hamiltonian
Hh̄(Q,p, t) involved in the Hamilton-like equations (16).

Acknowledgments

This work has been supported by DINAIN of the ‘Universidad Nacional de Colombia’ and by
the ‘Volkswagen Stiftung’ (Germany). The author is very grateful to the anonymous referees
for their valuable and constructive comments. I am also indebted to Keith Rigbi for the English
revision of the manuscript.

Appendix

Reasons for choosing the parameter �0 := P0 − p(Q0, P0, t0) as �0 = 0.
Let us begin with equation (22), and consider three particular choices of the parameter

�0: (i) �0 = 0, P0 = p(Q0, P0, t0), (ii) P0 = p′
0,�0 = ip′′

0 and (iii) P0 = −ip′′
0 ,�0 = −p′

0.
These selections are physically equivalent because the initial conditions for the equations (7)
and (16) only depend on Q0 and p(Q0, P0, t0). However, the choice (ii) and the Hamilton
equations (16) only give information about the time evolution of the real part of (22), similarly
(iii) only evolves the pure imaginary part of (22), whereas (i) considers the whole initial state
(22). Thus, the choice (i) appears to be the best option, and therefore �0 = 0.
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